Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 655: 48-55, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466765

RESUMO

INTRODUCTION: Lithium (Li), a mood stabilizer used to treat bipolar disorder (BP) symptoms has important anti-inflammatory effects by downregulation of glycogen synthase kinase-3 beta (GSK-3ß). However, sometime Li effect is not efficient in some patients suggesting genetic interference. Previous investigations described association between a genetic superoxide­hydrogen (S-HP) imbalance caused by a superoxide dismutase manganese dependent gene polymorphism (Val16Ala-SOD2 SNP, rs4880) and differential anti-inflammatory response of some drugs and bioactive molecules. Therefore, we postulated here that S-HP imbalance could present some effect on GSK-3ß modulation by Li. METHODS: to test this hypothesis, a genetic and a pharmacological S-HP imbalance protocols were performed. In the two protocols, immune cells were activated by phythohemaglutin (PHA). The first one, used peripheral blood mononuclear cells (PBMCs) cultures carrying different Val16Ala-SOD2 genotypes, and the second used a commercial macrophage cell line RAW 264.7. Macrophages were exposed to paraquat to induce high S levels (VV-like cells) or porphyrin, that is a SOD2-like molecule that increase dismutation of S into HP (AA-like cells). In both protocols the Li effects on GSK-3ß gene and protein modulation as evaluated in 24 h cultures. The inflammatory activation was also analyzed by cellular proliferation in 72 h cell cultures. RESULTS: as expected PHA exposure triggered a strong upregulation of GSK-3ß gene expression (p ≤ 0.001), and Li exposure showed GSK-3ß gene downregulation from 0.7 mEq/L concentrations. However, Li modulatory effects on GSk-3ß gene and protein expression was directly influenced by basal S-HP balance. Presence of high S-basal levels (VV genotype and VV-like cells) induced attenuated Li anti-inflammatory effects in comparison with balanced and AA and AA-like cells (p < 0.001). Despite methodological limitations related to in vitro assays, the whole of results suggested that Li anti-inflammatory effects is influenced by S-HP basal state and is plausible that its influence could contributes to resistance of some patients to Li treatment or to increase of intensity of some side effects Li-associated.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Peróxido de Hidrogênio/metabolismo , Lítio/farmacologia , Estresse Oxidativo , Superóxidos/metabolismo , Adolescente , Adulto , Animais , Transtorno Bipolar/sangue , Transtorno Bipolar/imunologia , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Mutação de Sentido Incorreto , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...